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Motivation, Research Question & Goals

Independent System Operators (ISOs) carry out day-ahead Unit Commitment (UC)

to schedule generators and Economic Dispatch (ED) to ensure the balance

between energy supply and demand.

Forecasts errors drive a wedge between the day-ahead projecধons and real-ধme
realizaধons, acধng as a key contributor to “day-ahead operaধonal risk”:

Higher than expected generaধon costs (G).

Insufficient operaধng reserves — reserve shorĤall (RS).

Load shedding (LS).

Renewable generaধon curtailment (VC).

Need to predict events potenধally triggering above without running ED hundreds

of ধmes

Algorithm to pre-screen for scenarios leading to operaধonal risk?

Problem

UC and ED account for grid transmission and conges-

ধon constraints preserving the temporal structure

(i.e., mulধ-hour ramping of thermal units).

Hour-by-hour mismatches between forecasts and

actuals are not sufficient to idenধfy operaধonal

riskiness.

Risk managers must treat scenarios holisধcally as

curves indexed in ধme.

Software & Experimental Setup

clnSim Tool

Generates joint probabilisধc asset-

level scenarios across hundreds of

VRE assets and load zones [1].

Simulaধons are condiধonal to

given DA forecasts.

Seasonally calibrated.

Case study: 1000 hourly scenarios
across 8 ERCOT load zones, and
185 solar & wind assets

(24 × (8 + 185) = 4632 dim.)
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Figure 1. Texas-7k operaধons simulaধon on Oct 4. This day has VC at 1 am in scenario 595, and LS at 3 pm in

scenario 760. In the VC event, a line in east Texas (C) creates a load pocket that prevents the flow of energy from

high wind generaধon in northwest Texas (A). The LS event is triggered by low wind generaধon which causes

congesধon (B) prevenধng the energy generated by convenধonal assets from flowing to North Central region (D).
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Figure 2. Workflow to screen clnSim scenarios for day-ahead power grids operaধonal planning in Vaࣅc.

The intuiধve characterizaধon of operaধonal risk is scenarios that are “outlying”, i.e., are far from

the bulk and the forecast (“central” scenario).

The scenarios are fed into ED simulator (Vaࣅc [2]), and the results are aggregated across scenarios

yielding to the probability distribuধon of grid operaধonal characterisধcs (G, RS, LS, and VC).

Relies on the Texas-7k grid from ARPA-E PERFORM Data Plan.

Statistical Toolbox

Consider 8 funcধonal depth noধons [3]

for defining riskiness in day-ahead oper-

aধonal planning of the grid:

Integrated Depth (ID).

Modified Band Depth (MBD).

Extremal Depth (EXD).

Extreme Rank Length Depth (ERLD).

L-Infinity Depth (LID).

h-Mode Depth (HMD).

Direcধonal Quanধle (DQ).

Random Tukey Depth (RTD).
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Figure 3. Operaধonal risk against aggregated NL load fN
i (t) on Feb 13. We highlight the top m = 50 scenarios (the more risky, the brighter its color).

Run grid ED simulaধons over 25 test days across the calendar year.

A baseline approach is to implement screening based on summary staধsধcs (e.g., peak load, ramp rate, or peak-valley difference).

Scalarizing the scenarios via a single screening metric loses too much informaধon and yields poor screening.

System Net Load (NL) is the simplest predictor of risk. Works for predicধng generaধon costs and reserves shorĤall but fails for load shedding and VRE curtailment.

Need more automated approach that gives a smart aggregaধon of high-dimensional scenarios

Analyze staধsধcal funcধonal analysis methods to define and predict “extreme” scenarios.

Outlyingness may be defined by aggregaধng hourly ranks or be based on distance (in magnitude/funcধonal shape) to the scenarios’ core.

Solution & Performance Analysis

Magnitude of Reserve Shortfall

Idenধfy the most likely scenarios to be in the top 5% (i.e., m = 50
out of 1000).
We devise a 2-stage procedure to select 75 = 1.5m scenarios:

1. n1 scenarios (n1 < N ) are selected by greatest AUC in NL.

2. n2 scenarios (n2 < n1) are selected by lowest funcধonal depth.

Funcধonal depth improves the proporধon of false posiধve and

false negaধves (see boħom-right and top-leđ quadrant in Fig. 5).

Predicধng extreme RS is more challenging during summer when

larger shorĤalls occur (Fig. 6 leđ).
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Figure 4. 3-stage detecধon based on merging grid and zonal level funcধonal depths

on Feb 26. Average net load on the x-axis and total load shedding on the y-axis.
The leđ panel shows aggregated grid-level selecধon and the middle panel shows

aggregated zonal-level selecধon. Scenarios screened out by AUC are in gray, the

rest are color-coded (brighter is more extreme) according to ERD funcধonal depth.

The right panel shows the merging of the two criteria, the n1 most extreme

scenarios in terms of their combined depth ranking.

VRE Curtailment

VC extremality: scenarios with daily curtailment ≥ 100 MWh.

Exclude days with no VC or more than 25% likelihood of VC.

Most accurate screening accuracy is 44.69% (DQ) using grid-level

VRE generaধon and NL as predictors.

Augmenধng to zonal informaধon increases accuracy to 61.58%
(LID). See Fig. 6 leđ panel.

In summer/fall, Far West zone load is a predictor of VC. The best

approach is pre-screening to keep nV CZ
1 = 450 scenarios

according to grid-level NL AUC and then apply DQ (90.19%).

None of the proposed depth metrics help for cold-weather VC.
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Figure 5. Detecধng SC via 4 different funcধonal depth metrics on Feb 13.

Aggregated daily NL on the x-axis vs. daily RS on the y-axis. Scenarios are
color-coded according to the respecধve depth metric: the brighter the color

gradient, the less deep the scenario. The green horizontal (verধcal red) line at

30.17 GWh (resp. 39.18 GWh) shows the threshold for the top 50 highest RS

(resp. top 50 highest NL).

Load Shedding

Most scenarios have zero Li = 0.
Any posiধve LS is operaধonally extreme; The number of

scenarios with posiধve LS Li > 0 varies day-by-day. There are
Avek(|Ek|) = 149.48 scenarios with LS on average. We select

Avek(n2(k)) ≈ 225 scenarios (50% margin).

LS primarily occurs on days with high grid-level NL during the

morning peak and high North Central zonal NL in the evening.

The funcধonal depths of grid-level NL provide limited predicধve

power; augment with zonal-level NL via a 3-stage screening

procedure (see Fig. 4).

EXD is best depth for screening LS (93.73%) when using adapধve

n2(k), nLSZ
1 = 650 and North Central zone NL. See Fig. 6

middle panel.
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Figure 6. Detecধon accuracy for idenধfying RS (leđ panel), LS (middle panel), and VC (right panel). The bubble swarm plots correspond to different funcধonal depth metrics

D. with each dot represenধng the accuracy P D
k achieved for the 25 given simulaধon dates and the gray horizontal bars denoধng the respecধve mean accuracy

Avek(P D
k ). Symbol size denotes the magnitude of the respecধve RS and the colors represent the seasons.

Take Aways

Staধsধcal measures of funcধonal depth offer a novel and effecধve approach to screen

scenarios for operaধonal risk assessment.

Work with depth metric based on grid- and zonal-level generaধon and net load.

Load shedding and VRE curtailment events tend to be associated with congesধon, and hence

depend on grid topology.

These complex phenomena cannot be predicted based on grid-level covariates and need

staধsধcal tools.

Anধcipate addiধonal gains through customizaধon of the funcধonal depth measures.

Open problem how to effecধvely merge mulধple depth rankings.

See arXiv.org for more details [4]
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